March 27, 2009

Bow Before the Power of Chlorophyll...And Coffee


Artist unknown
One of the Brickmuppet's Crack Team of Science Babes(tm) brings us news of a couple of reported breakthroughs in the refining of fuel from Algae.

 First comes this story concerning a much improved refining process. What is described as a "continuously flowing fixed-bed" process allows a vast increase in efficiency and reportedly can be managed to produce no waste water. A big advantage of this method is that it uses a reusable catalyst rather than expendable reactants. Finally, as its name implies the process is...continuously flowing, which removes the "filling/emptying reaction tanks" stage and massively improves flow output. One of the developers  This comes on the heels of the sucsessful testing of a seawater algal oil farm in Florida. This produced a thousand gallons of refined ATSM certified biodiesel on an eight of an acre...though the time interval is not mentioned.  There is more on this here.
This is particularly big news as they not only were using seawater..but open ponds. 

 Getting this performance from a SEAWATER species in open ponds vastly increases the potential locations and at a stroke reduces the fresh water demands of such an industry.

Finally, a recent breakthrough in biodiesel from discarded coffe grounds may at first blush seem to be of limited utility (one would want to use already used coffee grounds to avoid displacing excessive amounts of forests or cropland for coffee beans) but it could possibly have a non trivial benefit.
You see, the Coffee diesel is reportedly much more stable than some other biodiesels so there exists the chance that it may have some utility as an organic additive. This last is speculation of course, but it bears investigation.

Hydrocarbons are very hard to replace for many mobile power applications (vehicles...especially aircraft) because they are so good as energy carriers. With that in mind, Brickmuppet Blog has been touting the advantages and potential of algal oil for some time as the potential energy density advantages over other oil crops are stupendous (300 percent or more). Unlike other oil crops it need not necessarily displace food acreage. It is very renewable, should not impose a severe environmental impact if properly managed and such farms can (in theory) do double duty in waste water treatment. With Nuclear power providing the refining and distribution energy we have the potential to have a clean, sustainable and damned robust energy network both electrical and liquid.

Posted by: The Brickmuppet at 08:07 PM | Comments (3) | Add Comment
Post contains 408 words, total size 3 kb.

December 28, 2008

Questions Answered

Some questions  recently appeared in the comments of these two posts, regarding energy policy.

"Fortunately" after a tragic lab mishap involving Mentos, one member of the Brickmuppet's crack team of science babes is now ideally equipped to deal with comment threads that have returned from the dead! She now shambles up to answer these questions.

First up, 'Alternate Energy' asks about the relative energy yields of sugar beets and switch grass.

That's a hard one to figure as there are several factors involved, but some ballpark assumptions can be made.

Here sugar beets are credited with providing even better yield than sugar cane at an experimental French farm.

For ethanol, the top yields per acre are 714 gallons from sugar beets in France and 662 gallons per acre for sugarcane in Brazil


This might well be misleading as sugar beets are hard on the soil and need to be rotated rather more than other crops. That site mentions that one sugar beet crop per field every 4 years is a good rule of thumb with one per 3 being rather risky, so the number probably would realistically be 1/4th of that given.

By comparison, according to this report, switchgrass yields a theoretical maximum of 1,150 gallons of ethanol per acer.

These numbers are also somewhat as the celulosic process mentioned in the post is not fully operational (though it is very promising). The big advantage of switchgrass is that it is a weed, a native species and can be grown very well on marginal land that isn't really suitable for other crops. This is not the case with sugar beets and is important because we don't want to be displacing food crops for fuel. That is a very bad thing!

I personally think that algael oil, about which more here, here and here is a better option in general with a yield of kerosene type hydrocarbons 50 times that of the best ethanol producing crops. However,  switchgrass certainly has potential to supplement that. (Ethanol also works fairly well in suitable Otto cycle engines, whereas algae produces what is fairly close to diesel fuel.)

A comparison of various crop yields can be found here. Note that most displace food and that Congressional favorite corn is by far the worst of the lot.

Alternate Energy also asks in this post why there has been so little buzz surrounding Thorium Cycle Reactors (first mentioned here, or rather at the old blog, in '06).

The reasons for that stem from in part from the anti nuclear hysteria found in so much of the green movement, but also from a policy decision made by the Carter administration in 1977 when we got out of the fuel reprocessing business. The idea was that plutonium should not become a commodity to be traded and that this would ease proliferation risks...In practice this meant the US ceded an entire industry to the Europeans, the Russians and the Japanese.

Additionally, the media has been very hostile to nuclear power in general over the years. It should be rembered too that this is a technology that was abandoned. This gives, to a casual observer, the mistaken impression that it failed....which can cause it to be further dismissed.

The most promising thorium reactors are liquid fluoride reactors which burn up the vast majority of their fuel, far more efficiently and with less ultimate waste than other types. However this cycle is a breeder cycle and that got it nixed from consideration. Other types of thorium plants  have the advantage of using thorium fuel instead of uranium of course. This vastly increases global fuel reserves but these other thorium reactors don't really minimize waste as far as I know.

A previous post on this blog regards nuclear power in general can be found here, and nuclear  scientist Kirk Soronsen...who actually KNOWS what he's talking about...has a blog as well as a very informative discussion forum where thorium fueled reactor related issues are discussed in great detail by a variety of people far more experienced in them than an undergraduate oceanography major.

Undead science babe has been identified as "Franken Fran" and is a creation of Manga artist Kigetsu Katsuhisa.

Posted by: The Brickmuppet at 06:17 PM | No Comments | Add Comment
Post contains 699 words, total size 6 kb.

October 12, 2008

Energy Issues Almost Solved

 One of the Brickmuppets crack team of science babes points out that current and very near term technologies have the potential to meet our energy needs for the foreseeable future...without giving huge vast sums to the perpetrators of windmill boondoggles.


Hyperion Power Generation's little reactor has been mentioned in passing here before, but it has now gone from concept to prototype to being prepped for mass production. The company has contracts with Romania, the Czech Republic and is in negotiation with The Caymans, the Bahamas and Panama. (HT Brian Wang, who should be in your link list)
This reactor is developed from a General Atomics  design intended for educational purposes and is currently making use of the regulatory loophole designed for very small and safe reactors. The reactor is "walk away safe" and has NO moving parts.
(It does need connections for a heat exchanger to operate a steam plant and turbogenerators)

With each producing enough power for ~20000 homes the residential power needs of 300 million normal sized American homes could be met with 15,000 of these things. This number makes an interesting comparison with the companies tooling up to build 4,000 of the little boogers over the first 10 years. This number does not allow for industrial level power generation of course.

There are other small reactors intended for mass production as well.

The Toshiba/Westinghouse 4S reactor has gained a lot of publicity because it is being installed in the remote village of Galena AK. ( A further report in PDF form is here) This reactor is experimental and intended largely for 3rd world applications. It can last 40 years without refueling

An interesting design from the Oregon based firm of NuScale Power has been designed to be just small enough to allow for US industrial limitations.

That is, it can be manufactured from off the shelf components and not require any large imported casting and turbopumps that the US can no longer produce. This greatly facilitates mass production.
(The fact that we have lost the capacity as a nation to produce heavy industrial castings is worrisome in and of itself, but it is not something that can be fixed in the short term.)
This design is not as maintenance free as the others but it has a little less than twice the generating capacity.

Small reactors such as these have a few things going for them quite aside from the theoretical ease and speed of putting them into service.

Redundancy: Lots of small genrators are inherintly more resistant to single point failures than a few large ones. Large nmbrs of these, if relatively evenly dispersed would provide a good hedge against grid damage from natural disasters, deliberate attacks or squirrley wrath. The big northeast power failures of 1968, 1977, and 2005 were not just caused by the aged grid,but because the system was (and is) still fairly centralized.

Scalability: Power can be increased by the simple exedient of adding new reactors. All of these are designed to be set up in fairly remote locations. This allows bringing clean power to remote areas (the raison d'être of the 4S reactor for instance). This can be for industrial applications, or power to rural or third world settlements. Power allows not only industrialization, but such basics as refrigeration and water purification which are lacking in much of the world.

Reduce strain on the grid: The US energy grid is old..the oldest in the world simply because it was the first large scale one. This is part of the reason the big blackouts not associated with natural disasters happened in he northeast..the grid is oldest there. Distributing and decentralizing the power supply allows there to be less strain on the grid at any one point. This is not practical with, say, a coal plant, as the transportation infrastructure for the fuel is uneconomical to duplicate, but with nuclear power the refueling/replacement takes place every 10-40 years depending upon the specific design, so that is no longer a major consideration. Incidentally, this was, reportedly, one of the reasons the Czech Republic went with Hyperion.
We've already signed up our first customers, Romania and the Czech Republic. They were looking at a very high infrastructure cost for an electric grid, but are now doing a distributed model.


Grid upgrades need to be done of course, but this allows both for more time and far less disruption in the process.

Note that while the ammounts of waste produced by these are very small the waste must be dealt with. Until the late 70s the US planned to reprocess its nuclear waste. This not only allows most of it to be reused greatly increasing reserves, it significantly reduces waste that needs to be disposed of.

Belgum, Germany, France, The UK, India, Japan, and Russia all reproces their waste, however, the Carter administration, as part of a larger overall policy of making bad decisions whenever possible,  outlawed nuclear reprocessing. Now the plan is to bury the unreprocessed..and therefore more dangerous than it needs to be...waste in a Yucca mountain cave. This was selected primarily because of the areas relative geological stability and Nevada's small congressional deligation and number of electoral votes.

Reprocessing is the key to nuclear power.

We simply MUST start building large reprocessing plants. (Reprocessing plants can be designed produce scads of electrial power as well).
Beyond that everything needed for energy in perpetuity is easy.
Brian Wang reports that great breakthroughs are being made in thermoelectrics, which has the potential to greatly increase the useable output of the above mentioned reactor designs ( or, alternatively remove the associated turbines and their maintenance/repair costs)
This would, as well, increase the effeciency of most other industrial processes.

In the short term "Drill Baby Drill!!!" and increasing efficiencies in diesel and hybrid vehicles will help the world meet its liquid fuel needs but petroleum is a finite resource. Biofuels are one answer, but not the corn based ethanol that requires vast acreage of food crops to be displaced...and is damned inefficient anyway. The only biofuel that is really good in terms of amount produced per acre is oil from algae. There have been big advances in this recently as well as several production ventures. (More here and here) Algae can be cultivated in lots of places, but both he hydroponic systems and the refining process require energy....thus the necessity for nuclear power.

If these things are followed through on we could have a remarkably robust, clean, and more than adequate set of complimentary power sources within 20 years. If we go with windmills we will have to lay vast ammounts of power cables to vast ammounts of windmill that wil be highly erratic in their output...though via subsidies...we will make T.Boone Pickens rich.

As this is the silly season there are thoughts on the politics of this descretely below the fold.

more...

Posted by: The Brickmuppet at 07:18 PM | Comments (3) | Add Comment
Post contains 1435 words, total size 13 kb.

October 03, 2008

Thorium Legislation Before Congress

One of the Brickmuppet's Crack team of Science Babes relays this bit of important information from Kirk Sorensen.


I want to alert you to an exciting development in the US Senate regarding
thorium--legislation introduced by Senators Hatch and Reid to amend the US
Atomic Energy Act to further the utilization of thorium as a planetary
energy source. This represents what so many of us have been saying and
hoping for for so long, a safe clean abundant energy future powered by
thorium.

Here is a link to the text of the legislation and the press release from
Senator Hatch's office:

Thorium is abundant and can be used in nuclear reactors much like Uranium.

Even better, when used in a liquid fluoride reactor, thorium is extremely efficient and can be utilized to reprocess nuclear waste reducing the amount of waste that has to be disposed of significantly*. Its efficiency would reduce waste further and likewise reduce radioactive fuel consumption...extending our reserves significantly.  As an additional perk, the US has huge thorium reserves.  Given the vast increase in available fuel combined with the incredible efficiency of the fuel cycle, adding thorium to our energy mix has the potential to massively increase our fuel reserves. This seems great and we've enthusiastically blogged about it before. However, it has NOT gotten any official support.

Until now.....

 There is a discussion of this over at Energy From Thorium and there is more on recent developments in thorium power here and here. Nuclear power developments including thorium news from the US and India are mentioned here.


That this is actually before congress is an extremely important development and potentially a real breakthrough.

While the bailout is immediate in importance, as soon as that is resolved, write your congress in support of this legislation. It may hold the key to our future.

* This explains why normally anti-nuke Harry Reid is a co sponsor. It promises to vastly reduce the amount of waste that would need to be stored at Yucca Mountain.

Text of he legislation is below the fold.
more...

Posted by: The Brickmuppet at 06:37 AM | Comments (2) | Add Comment
Post contains 1026 words, total size 10 kb.

July 12, 2008

Look!...a Particularly Cunning Energy Plan

T. Boone Pickens has an Energy Plan that is getting a lot of attention.

 

One of the Brickmuppets crack team of science babes crunches the numbers and comes up with some pertinent suggestions.


There is little to add really.

The Pickens plan involves filling the windiest parts of the west all the way from from the Canadian border to the Rio Grande with windmills over a 10 year period.

Back to the weather problems...the area is very windy on average but that is just an average...atmospheric high pressure systems which can cover vast areas tend to stop the wind....How vast an area?



The two low wind high pressure systems on this map could stretch from ...oh...say...the Canadian boarder to the Rio Grande!

Note that high pressure systems are also associated with heat waves and cold snaps, so the wind would not be available during weather conditions that would boost demand.
Wind is inherently problematic in this regard...
This does not get into incidents where the wind blows too fast and damages the mechanism....not unheard of in this area where powerful line squalls account in part for the high AVERAGE wind velocity.

Besides the fickleness of wind there are other problems:

The areas involved are quite far from most places the power is needed. Power loss through the resistance of power lines is going to take a huge toll.

Windmills have moving parts and dynamos that require a fair bit of maintenance and this is multiplied in this plan by the thousands...in remote areas.

Freeing up natural gas for vehicles is illusory...for one thing we actually have to import some of our natural gas supplies and few cars in the us can run off NG. Its energy density sucks too...it is little better than electric with regard to range.

The money and the 10 years would be far better spent  doing mass producing Generation-4 reactors.....its doable...we know this because it is BEING DONE!( just not here)

This plan is a monumental waste of time and energy. Like the corn based ethanol boondoggle this proposal smells. It makes no economic sense whatsoever unless one takes into account the subsidies offered for wind power by congress. Charles Barton has the scoop here in the transcript of a remarkably candid interview with Pickens who admits that not only is he not going to pursue the proposal without subsidies, not only is it not going to produce constant power, but he is going to see to it that none of the windmills are built on his land!

This is, like, the ethanol from corn boondoggle, little more than a way to siphon off taxpayers money. Unlike that fiasco...it is less than likely that there is any good faith mistake here.

 


A Brickmuppet Blog post on nukes in general from last year can be found here.

'Science babe' is Maria from Sakura Wars....out of character and out of costume.

Posted by: The Brickmuppet at 08:55 PM | No Comments | Add Comment
Post contains 488 words, total size 4 kb.

June 01, 2008

Fuel Cells...on the Cheap?


Despite completely unrelated text on her chalkboard, one of the Brickmuppets' Crack Team of Science Babes tm reports on progress on the fuel cell front.
  It seems that two separate science teams, one at MIT and one at Basque University in Spain have developed improved Methanol fuel cells that not only have increased output but are dramatically cheaper due to  the reduction in the amount of platinum required.

The inability to find a substitute for platinum has been one of the big sticking points in fuel cell developments and the major hitch in the Administrations ambitious fuel cell initiative from 2001. The previously anticipated substitutes did not pan out.

Methanol fuel cells run at much lower temperatures than other types and are anticipated to have many applications, particularly personal electronics, as they would have far greater run time than any batteries and could in theory be powered by off the shelf rubbing alcohol methanol from a fuel cartridge or something.  Fuel cells in general are also much more efficient than even diesel engines in producing electricity, though they tend to be very fuel specific and there have been scalability problems.

This is potentially a huge breakthrough.

'Science Babe' is a one second gag from Lucky Star that I did not get....screencap was shamelessly stolen from Chizumatic. Go buy the DVD and support Avatars' livelihood!

Posted by: The Brickmuppet at 10:20 PM | Comments (6) | Add Comment
Post contains 228 words, total size 2 kb.

May 24, 2008

Damn Gas Prices....

 One of the Brickmuppets' Crack team of Science Babes returns briefly from the beach to review a few things regards that thing that's on everyones mind right now.... GASOLINE ALTERNATIVES.

There is a lot of talk regards Robert Zubrin's plan.
Zubrin is a talented engineer and has an amazing out of the box imagination. His plan is laid out here and there is a typically literate discussion of it going on at Jerry Pournelle's place here.

One big quibble I have is that Zubrin seems dismissive of fears that corn to ethanol processes will lead to food shortages, and indeed it is likely that a lot of the current spike in domestic food prices is due to petrol induced transportation costs.
However, both directly and indirectly, burning food will raise its cost and scarcity. (It's Science!)
Zubrins plan is interesting in other ways. While he is a biofuel advocate, his focus is on methanol. Methanol has a few disadvantages...
It's got poor energy density and it is corrosive, (eating aluminum and rubber) thus it requires  specially designed engines. It is also toxic but given that gasoline is not exactly FDA approved either this at least seems to be a silly gripe. Methanol (like Ethanol) is unsuitable for diesel engines and is generally used in otto cycle engines which exacerbate its poor energy density...One can go ~ half as far on a tank of methanol...assuming you don't have an aluminum engine block in which ones trip is shorter still.

(Much is occasionally made of the fact that Methanol can be refined (via dehydration) into dimethyl  ether which is a diesel fuel with a substantially higher cetane rating which gives it even better energy density in a compression engine than regular diesel. This is actually a superb diesel and jet fuel with spectacular energy density per volume...rather too much in fact as, unlike other such fuels it is highly  flammable, making it a safety hazard for ships and jets.It also is a gas at normal temperatures and pressures which nullifies  its energy density advantage and imposes handling problems. Thus I am very skeptical that CH3OCH3 is the answer to our fuel needs.)

   Note though that methanol has the very large advantage that it can be made from most types of trash as well as the inedible portions of crops....in fact it can be made  from virtually any bio-organic matter.

(This is an good place to remind people that non-edible portions of crops are not technically trash, they are normally recycled into the soil as fertilizer, so alternate fertilization methods are necessary...this is not insurmountable of course, but it is a nontrivial concern)

Methanol is, despite its disadvantages, a vastly better idea than corn based ethanol which is ranked by efficiency on this chart that will...er...spoil the lunch of ethanol fanatics.

Ascending order
Crop kg oil/ha litres oil/ha lbs oil/acre US gal/acre
corn (maize) 145 172 129 18
cashew nut 148 176 132 19
oats 183 217 163 23
lupine 195 232 175 25
kenaf 230 273 205 29
calendula 256 305 229 33
cotton 273 325 244 35
hemp 305 363 272 39
soybean 375 446 335 48
coffee 386 459 345 49
linseed (flax) 402 478 359 51
hazelnuts 405 482 362 51
euphorbia 440 524 393 56
pumpkin seed 449 534 401 57
coriander 450 536 402 57
mustard seed 481 572 430 61
camelina 490 583 438 62
sesame 585 696 522 74
safflower 655 779 585 83
rice 696 828 622 88
tung oil tree 790 940 705 100
sunflowers 800 952 714 102
cocoa (cacao) 863 1026 771 110
peanuts 890 1059 795 113
opium poppy 978 1163 873 124
rapeseed 1000 1190 893 127
olives 1019 1212 910 129
castor beans 1188 1413 1061 151
pecan nuts 1505 1791 1344 191
jojoba 1528 1818 1365 194
jatropha 1590 1892 1420 202
macadamia nuts 1887 2246 1685 240
brazil nuts 2010 2392 1795 255
avocado 2217 2638 1980 282
coconut 2260 2689 2018 287
oil palm 5000 5950 4465 635
note that of all biofuels listed, corn ethanol has the absolute WORST yield of any listed crop...naturally it is the one congress is pursuing with the utmost vigor.

Zubrins other big proposal is to mandate flex fuel vehicles.
 This is a very sensible idea and would mean that any car sold in the US would have to be capable of running on a wide variety of fuels including corrosive ones like methanol. This would allow consumers to buy whatever fuel was cheaper (perhaps seasonally) and solve a lot of the chicken/egg problem with alternative fuels....namely that people won't buy an alternate fuel car if they cant get fuel for it...and gas stations wont install methanol or other alternate fuel pumps if there are no cars to sell the fuel to. The downside to flexfuel vehicles is a slight reduction in efficiency since tolerances are necessarily lower. Also it has been pretty much accepted by now that it is challenging to say the least for any flexfuel otto engine to be made that will run on kerosenes like diesel fuel.

Ignoring, for now,  the potential represented by steam cars, this is bothersome because not only is the diesel cycle extremely efficient but the kerosenes and vegetable oils they have historically run on have very high energy densities.


Now two companies, Scania and Transonic Combustion have gone at this intractable problem  from the opposite direction and produced diesels that will run on alcohols...and unmodified on regular diesel...and on biodiesel! The Transonic development is rather closely guarded at the moment, but there is a bit of info here. Also, there is a good write-up on the Scania design (which is already commercially available)over at Green Car Congress.

Not only that...biodiesel, particularly from algae is an exceedingly promising fuel that need not interfere with crop production in any way. Brickmuppet Blog has ranted on this from time to time but there have recently been a  promising  development or two in this area.

Algael oil is 50 times as productive as the best non-algael  biofuel crops. There are hurdles to be sure, but certain species of algae produce oil as a energy storage medium and it requires very little refining to be used as fuel. The algae needs water, light, fertilizer and a sealed environment to keep competing , less "oily" breeds of algae, out, but its tanks need not be associated with farmland in any way, thus no food crop displacement. With artificial lighting (and assuming a way to mitigate the kerosene smell) the algael farms and pressing/refining rigs can be located in industrial parks or even cities. It is the only crop that can potentially replace petroleum in cars without turning the entire planet into farmland.

There is a very comprehensive overview of Algeal Oil theory here.

Note that with flexfuel vehicles, one need not worry about the need to replace ALL of the oil we consume. A mixture of algael oil, alcohols from trash and even our own domestic oil production would render us energy independent. The competition between the three would likely drive down prices over time as well.

Of course there is no such thing as a free lunch. None of the biofuel proposals will work without electrical input of some sort, either to facilitate fermentation or provide light, ventilation or just press the algae. Thus an external power source is needed. If one is serious about biofuels one is going to need to increase power generation capacity as our grid is already under strain.

If one is serious about biofuels one is likely enthusiastic about reducing pollution. Thus one is going to have to look at relatively non polluting sources of said power.

If one is not living in a fantasy land one needs to dismiss SOLAR and wind except for certain regional/ niche applications...our hydro is about at capacity and geothermal is useful in limited areas.

Thus if one is serious about biofuels one is going to be foursquare for  a crash program to increase our nuclear power infrastructure.

Ultimately, when it comes to alternattive energy, nuclear is the only alternative.

Nuclear is the future.

A rant from last year on THAT topic is here.

Today's 'Science Babe' is actually Emma Sky from the Phoenix Wright games. I believe it is  official artwork despite her summer attire.

Posted by: The Brickmuppet at 12:54 AM | No Comments | Add Comment
Post contains 1163 words, total size 31 kb.

March 04, 2008

Wow...Oil....From Algae!!

 
One of the Brickmuppets crack team of science babes brings us this Jim Fraiser post on what may be a big step forward in  biofuels.

It seems that a company named Green Star Products has completed a low cost algal farm that is, in theory, suitable for quick setup nearly anywhere outside of  polar/subpolar regions.

Oil from algae produces about 50 times the yield of the best oilseed crops, and this sort of arrangement might not displace food crops to the same extent as, say ethanol from corn, which is always struck me as a dubious idea.

I'm more excited by thermal depolymerization as it doubles as waste disposal.

This however is really interesting. Note that there are considerable hurdles (read the whole post for Fraiser's thoughts on that) and I still think that without lots of cheap nuclear power to provide the heat that thermal depolymerization...and to a lesser extent algae refining...need then the future of biofuels is marginal at best.

WITH nuclear power, they could potentially produce high density, carbon neutral, liquid fuel with little disadvantages over natural petroleum....a win-win for everybody except anti-nuke hysterics and the most hardcore greens.

Note: this is a repost of a post originally made on March 15, 2007 as the original post is inexplicably not linkable.

Posted by: The Brickmuppet at 10:46 AM | No Comments | Add Comment
Post contains 216 words, total size 2 kb.

January 14, 2008

More Ethanol...But Now With Less Boondoggle!?!


One of the Brickmuppet's crack team of science babes points us to two stories regards breakthroughs in biofuel practicality.

First via Instapundit, General Motors has entered into a partnership with Coskata on a celulosic ethanol process ( more here ,here and here). Given the involvement of a major auto company, and the the particulars of the process, this seems like big news. The process in question uses "patented microorganisms" and reportedly produces ethanol at approximately a buck a gallon. Not only does this process NOT displace food crops, the company claims it can actually "eat" a fair amount of municipal waste in the process. This is a swell win-win if true.

Note that the one dollar a gallon is misleading, not just because of profit and overhead but also because ethanol has less energy density than gasoline so one would need to burn more to go the same distance** (assuming the valves in ones car are even ethanol rated).  However, the process it is still very promising as the price at the pump would still, theoretically, be comparable to current gas prices. 


In related news, scientists  have been looking at the highly promising cash crop switchgrass as a cellulosic ethanol feedstock. Interestingly, it is not an exotic crop, but one of the primary native plants of the North American tall-grass prairie! IT GROWS IN THE MIDWEST NATURALLY! Thus its environmental impact is likely to be rather limited.

According to this article (via The Energy Blog), the scientists are claiming a 540% energy return from switchgrass. Woah!

No that is not a typo. That is over 5 times as much energy (in ethanol) being produced than was used to grow, harvest and process the crop. The study seems to assume using switchgrass derived fuel to power the process so if one were to apply external electricity...oh say...nookuler..then yields would be rather higher. This is still problematic compared to the energy needed to get Saudi Oil, but that gap is closing.

Switchgrass is particularly interesting because it grows quite well on marginal land (it is a weed after all) thus it need not displace food crops. Being a native prairie plant it could actually be good for the environment in central North America, though this would depend on details of how it is harvested. It certainly should not have much of a negative impact.

I still think algael oil is the best biofuel bet for many things, but both of these ethanol breakthroughs are very promising. If we were using more of the ultimate flex fuel vehicles...we would not need to choose and could buy whatever was cheapest seasonally!

 **In this regard ethanol is actually far better than methanol.

"Science babe" is Myuki from Lucky Star and thus is an imaginary cartoon character...fan mail and marriage proposals will, therefore, not be forwarded.


 

Posted by: The Brickmuppet at 09:09 PM | Comments (3) | Add Comment
Post contains 478 words, total size 5 kb.

December 23, 2007

Atomic GET!


One of the Brickmuppet's crack team of science babes brings us an overview of several recent, not so recent and recently noted developments on the energy front.

There has been a bit of buzz regards the  recent announcement of Toshiba's "Mini Nuke". A very tiny reactor with no moving parts (aside from convectioning sodium) that has great potential for decentralizing the power grid.


Despite some confusion, this reactor seems to be different from the little reactor that was first discussed at Brickmuppet Blog in '03, namely the Toshiba 4S reactor or  "nuclear battery". This is the  reactor offered to Galena Alaska  and is now slated to be operational there by 2010 ...(a PDF  from Galena's public info office is here). The dimensions given for the mini nuke reactor are much smaller than those given for the 4S at 20 ft x 6 feet....about a third the size of the 4S....close enough to 1/3rd the height that  a metric conversion error is possible.



A perusal of the Toshiba nuclear website produces no info on the English site but slogging through the Japanese side produces this page on the 4S and the miracle of Babblefish indicates that the design now comes in 2 sizes 10 and 50 MW. There is no mention of the small reactor mentioned above. However, as I was posting this I found that  Brian Wang believes this is indeed a separate reactor and points to this article from 2001. If this is right (and Wang seems to be on top of this stuff) then this is a pretty big development. It also explains why the Next Energy News Article has the first operational one slated for use in Japan rather than the US.

The potential for these two reactors is tremendous. It could be a boon to the developing world. Pollution free power in isolated locations with little or no infrastructure. Power that can be used for applications as diverse and vital as clean water, irrigation, refrigeration, air conditioning, communications (internet access) and everything else. The unit is sealed and the fuel is not weapons grade, so the proliferation issues are minimized.


In this country as it allows a HIGHLY decentralized (and therefore robust) energy grid. Single point failures like the 3 big northeast blackouts would be a thing of the past if little reactors were dispersed around areas more than 60 feet above sea level and not subject to explosive vulcanism...IE most of the country. These two reactors are highly efficient and would be swapped out at the end of their lives ( 40 YEARS!) and have their contents taken to other larger reactors for reprocessing and recycling.

With a plant height of only 20 feet, the smaller reactor might well have civil marine applications especially given the recent concern about merchant ship pollution (ironic since marine diesels are amongst the most efficient internal combustion engines on the planet... notwithstanding their smokey start-ups).

As Brian Wang Points out, these 2 reactors are not the only small nuclear reactors reaching the end of their development and he has a link rich post on several of these here.

There are other overviews of these smaller reactors here, here and here. Brickmuppet Blog commented briefly on one of them here .

On the big reactor front, General Atomics has a pebble-bed reactor similar to those being developed in South Africa and Japan. The General Atomics reactor is the GT MHR

Longtime readers know that thanks in part to Kirk Sorensen's excellent website I am particularly partial to thorium reactors both because of their efficiency, low waste and the commonality of thorium. Well, there is a liquid salt reactor that runs on the sort of U233 and thorium mixture that Kirk Sorensen has long advocated the FUJI MSR. This is a molten salt reactor being developed by Fuji Electric a Russian firm and General Atomics. This reactor is complementary to the above mentioned in that it is somewhat flexible in its diet of fissionables and can actually "eat" some nuclear waste!

There is more from  here...



In the Molten Salt Reactor (MSR) the fuel is a molten mixture of lithium and beryllium fluoride salts with dissolved thorium and U-233 fluorides. The core consists of unclad graphite moderator arranged to allow the flow of salt at some 700°C and at low pressure. Heat is transferred to a secondary salt circuit and thence to steam. The fission products dissolve in the salt and are removed continuously in an on-line reprocessing loop and replaced with Th-232 or U-238. Actinides remain in the reactor until they fission or are converted to higher actinides which do so.

The FUJI MSR is a 100 MWe design operating as a near-breeder and being developed internationally by a Japanese, Russian and US consortium.

The attractive features of this MSR fuel cycle include: the high-level waste comprising fission products only, hence shorter-lived radioactivity; small inventory of weapons-fissile material (Pu-242 being the dominant Pu isotope); low fuel use (the French self-breeding variant claims 50kg of thorium and 50kg U-238 per billion kWh); and safety due to passive cooling up to any size.

There is a long list of papers on high temperature reactors here and spirited and lettered discussions in Kirks discussion forum here.


These developments in atomic power are really a fish or cut bait moment for the greens. Either they really believe global warming is a problem...or they don't.

Lets look at their actions regards windfarms ...ummm..they oppose WIND FARMS!?!

This indicates that the answer is "don't". Rather, it seems, it is just a political tool for them. This is unfortunate. While we at Brickmuppet Blog don't think AGW is the most serious environmental crisis facing us , it is certainly non- trivial Even if the skeptics are right and the major reasons for the warming of the planet are natural, it is stupid to add to the issue and create other problems through pollution. We are on the cusp of being able to solve most of the problems relating from emissions...bring clean power to the developing world and raise the standard of living across the planet  over the next 20 or so years...only the hairshirt luddites are standing in the way.

 More thoughts along those lines, and yet more analysis of the Galena reactor here. (via Ubu)


Alcohols have been getting a good deal of attention lately and to that end, Alan Boyle has a fine and link rich article on this here, (HT Instapundit).

That post and much discussion has been sparked in part by Bob Zubrin's new book. Zubrin advocates methanol, which is unexciting because of its very low energy density, but is easier to make and shouldn't displace food crops. It's big drawback (aside from being corrosive) is that it reduces cars to near electric ranges.  His proposal is interesting in that he wants  to mandate flexfuel vehicles.

This opens the market to competition not just amongst suppliers, but commodities.

For the reasons outlined here I think steam cars (!?) may be the best solution for this. Weather the engines are external or internal combustion, the flex-fuel idea is certainly doable and a practical way of getting around the chicken/egg problem of alternate fuels.

 As to recent developments in those fuels....

Shell is building a biofuel refinery in Hawaii.

There is a pilot program in Arizona to use the CO2 from a coal plant to grow algae for oil production.

A huge new biodiesel refinery has opened in India.

High density liquid fuels are still necessary for aircraft, and have lots of advantages as far as energy density and quick refueling especially as opposed to batteries....but wait.

....On the battery front Pixy points to this article. Possibly the biggest energy story of the year.

A lithium ion battery with 10 TIMES the capacity!

This is revolutionary!

This is big, from laptops to APUs to cars. If this pans out it makes electric cars practical, and makes portable battery packs for computers and other applications last 120 times as long...or gives 10 TIMES the power for processing or whatever you need to do!

More here and here.

In other battery news, Toshiba (remember them?) has developed a lithium ion battery that can be recharged in a minute! If the two Lithium Ion developments are in any way compatible, this could really speed up charging of electric cars!

It would also put a strain upon the energy grid which is another reason why we need to start building those dispersed little nuke plants we started out with. 

You see, Nuclear power is actually the key to most of these energy independence proposals.

*That is, electric cars require power for their batteries.

*Hydrogen must be manufactured through electrolysis or other means.

*Biofuels, even if they are algael biodiesel, biodiesel from waste, or alcohols require some energy input to produce their fuel in industrial quantities. 

There is no such thing as a free lunch and these technologies are no exception. These are interesting technologies, but they are energy carriers for the most part, and that energy must come from someplace. Solar, and and other fairly clean non nuclear sources have niche applications but for the power generation needs of an industrial society atomic power is really the only clean option.

Whatever path secondary power and energy carrier systems take, Atomic Power is the key to the future.

Those that oppose it are the futures enemies

Science babe is, of course,  Emma Skye, the freelance forensics expert from the Phoenix Wright Game


Posted by: The Brickmuppet at 08:54 PM | Comments (1) | Add Comment
Post contains 1584 words, total size 15 kb.

December 15, 2007

We Must Explore Far More Radical..Indeed Cutting Edge Technologies...

...Steam Power for instance.

It seems that steampunk lives beyond alternate history novels or the pages of Ninja High School, for one of the Brickmuppets' crack team of science babes brings us this series of links on a recent spate of interest in external combustion applications.

Steam power, you see, has one advantage that is quite appealing in an age where the future of liquid fuel seems to be in a state of flux. Steam is inherently flexible in its fuel.

The reason for this is simple enough. The inner workings of an engine work over a fairly narrow range of tolerances. You can expand the range of fuel types in an internal combustion engine somewhat by sacrificing a bit of efficiency. In this regard the comparatively efficient Brazilian style flex fuel vehicles are a great innovation in being able to burn ethanol and gasoline which have rather different properties...yet even they are far more alike than different. For instance, you can't run diesel in a gasoline engine...it is too viscous, and you can't run gasoline (or most alcohols) in a diesel because they will explode both prematurely and too hot, damaging the engine.

In a steam engine, the engine is optimized for whatever working fluid the boiler uses (usually dihydrogenmonoxide). However, the actual fuel is burned externally to the working fluid. All that is required is that the fuel provide heat. This fuel can theoretically be any heat generating substance from buffalo chips to fissioning metal, but for practical automobile purposes we'll confine ourselves to liquid or compressed gas fuels...the only adjustment required at for accommodating a wide range of fuels from oil to natural gas is the configuration of the burner (and in the case of compressed gasses the container of course). This is orders of magnitude easier to fix than the intricate workings of an actual engine. Steam engines can be in pretty much any configuration from reciprocating to rotary to turbines, though turbines generally give lower fuel efficiency.

This might sound like a hairbrained scheme...but as I am bald such schemes have appeal to me...they also have appeal to a company called Cyclone Technologies who (via Green Car Congress), is marketing a high efficiency Rankin Cycle steam engine for cars. This particular engine has twice the horsepower per given volume of a gas engine and produces all kinds of torque. Not mentioned in the article is the time needed to get up a head of steam. Of course if your vehicle is a hybrid you can make your fast getaway from the inevitable hoards of zombies on an electric motor while your main engine builds pressure.

A less exciting idea (but still using steam) Is this BMW concept, it has none of the flexfuel advantages, but rather uses waste heat from a regular engine to run a small steam powered generator, increasing overall efficiency. This, however is a detour from the other steam powered innovations that have been mooted recently.  

The German Firm of IAV has produced the Ezee engine, a steam engine that can go from cold start to full power in 30 seconds. It is also exceedingly efficient producing diesel like fuel economy! There is an APU that keeps the boiler from freezing if left in the arctic for several days, however the engine and boiler have, astonishingly, been designed to be frozen solid without damage...requiring only starting it to melt the ice and run...though this is rather likely to take longer than 30 seconds (so watch out for the ice zombies!) . More analysis of this from the heat engine department of Okyama University in PDF form here and there is a PDF of a short Rutgers University paper on steam developments and their potentials here.  

As to alternatives to oil, notwithstanding my lack of qualifications in this area, I've recently declared myself  in favor of algae-generated biodiesel to most other biofuel alternatives. I say this because of their potential efficiency of generation, the energy density of kerosenes and because they are less likely to directly and indirectly impact food consumption. But whatever we eventually replace/supplement oil with, steam engines can use it and we can actually have the sort of direct competition between ethanol, gasoline, diesel, biodiesel, methanol and even natural gas that Dr. Zubrin so rightly calls for.

Note that steam cars are not at all far fetched, the Stanley Steamers I joked about in this post were real. In fact, steam powered cars were once considered a real competitor to the internal combustion powered automobiles, in part because of their comparatively high torque (for dealing with hills).

Of course these engines might have maritime uses as well as emergency generator applications and a whole range of other uses. Remember, the primary way we are able to get useable power from atomic fission is via steam...

...so steam IS the technology of tomorrow!

("Science Babe" art by Formalhaut)

Posted by: The Brickmuppet at 10:33 PM | Comments (1) | Add Comment
Post contains 826 words, total size 7 kb.

Avatar Is Experiencing Joy

...as he facilitates future joy for the rest of us.

Yes, I admit it, I've liked what little I've seen of Lucky*Star 

Posted by: The Brickmuppet at 09:16 PM | Comments (1) | Add Comment
Post contains 27 words, total size 1 kb.

November 24, 2007

Hydrogen Production Breakthrough



One of the Brickmuppets' crack team of science babes runs the numbers on hydrogen and points us to this recent story about a breakthrough in bacterial hydrogen generation.

The results came as a result of experiments with the sort of microbial fuel cell described here. This design produces electricity in small amounts but its big payoff was in hydrogen, 288 percent the energy in hydrogen that was put in.
This is not quite as impressive as it sounds. For example, if one replaced all the cars with H2 it would require the generation of just over 1/3rd the energy required by all cars to fuel them. However all hydrogen schemes that don't extract the hydrogen from hydrocarbons have high energy costs, if this is scalable it is orders of magnitude more efficient and an energy producer rather than looser. That is big.It is also capable of processing waste and generating its own energy while doing it.

As a waste disposal technique this has real potential to be tremendously helpful (again, if it is scalable).

Hydrogen is unsuited for aircraft or ships but given enough cheap energy a case can be made for H2 fueled fuel cell cars. Their range would suffer,( from what I've read, about 150-200 miles is about the best one could realistically get without turning the fuel tank into a bomb) and that assumes very efficient fuel cells. If there are H2 stations everywhere, this becomes less of a problem.
However, this process, let alone any of the others, would only make sense for hydrogen production for cars if a vast amount of cheap power were available.


So, like a lot of alternate energy proposals, it is pretty much dependent on nuclear power being developed on a very large scale in this country.

Atomic power is  the future.

Science babe is actually Maria from Sakura Wars. (Which I should watch at some point)

Posted by: The Brickmuppet at 01:52 AM | Comments (9) | Add Comment
Post contains 319 words, total size 3 kb.

October 29, 2007

Refrigerator Nuke

 

One of the Brickmuppets crack team of science babes reports on this interesting design from India. Yes, Brickmuppeteers, it's a compact nuclear reactor that produces 100kw of energy from a 1m3 space!

Of course, it's heavy...being, you now, one cubic meter of heavy metal, but this could have applications for the shipping industry as well as remote power production in space or the third world. Such a device could run freshwater stills and provide distrbuted power supplies.

Note that a reactor is not a power source unless its fitted for radiothermal generation, (and then it's not really efficient). This device would have to be hooked up to a boiler to harness its energy. In fact it was designed in part with railroads in mind...the thing is small enough it could just sit in the firebox!

(OK "sit" does not convey the complexity o the connections involved)

IF they can make this thing as robust as one of NASA's rtg generators....this could fill a very useful little niche.

I WANT AN ATOMIC POWERED STANELY STEAMER!!!!

Ahem.....

More or less Stanley Steamer-free discussion here, at Kirk Sorensen's excellent thorium advocacy site, where one finds cool stuff like this all the damned time.

 

Posted by: The Brickmuppet at 08:04 PM | No Comments | Add Comment
Post contains 203 words, total size 2 kb.

September 29, 2007

First Nukes in 30 Years!

A  member of the Brickmuppet's Crack Team of Science Babes brings us this Energy Blog post on NRG's application to build the first nuclear power plant in 30 years. Most astounding is the speed with which they expect to get the thing online, just 8 years from now! As James Fraiser points out, this may be due to the new streamlined rules the current administration has put in place recently,but it may also be because the Advanced Boiling Water Reactor lends itself to ease of construction (and has proven this capability in Japan and Taiwan).

  The comments in the Energy Blog post are interesting. I agree with Fraiser and Kirk Sorensen that thorium reactors are a better idea in the long run as they handle the waste issue better, but the the ABWRs are proven (and safe) designs that can be brought online quickly.

Atomic Insights has related thoughts here.

"Science Babe" is, of course Emma Skye from Capcom's Phoenix Wright game.

Posted by: The Brickmuppet at 04:53 AM | Comments (1) | Add Comment
Post contains 167 words, total size 2 kb.

<< Page 1 of 2 >>
143kb generated in CPU 0.07, elapsed 0.0761 seconds.
73 queries taking 0.0256 seconds, 205 records returned.
Powered by Minx 1.1.6c-pink.