

LEO Propellant Depot:

A Commercial Opportunity?

LEAG
Private Sector Involvement
October 1 - 5, 2007
Houston, Texas

Dallas Bienhoff The Boeing Company 703-414-6139

The ESAS Recommended Architecture

- 1.5 Launch architecture: Ares I & V
- Farth orbit rendezvous: CFV to LSAM/FDS
- EDS performs Earth orbit insertion & circularization and TLI burns

- LSAM DS performs LOI with CEV and lunar descent and landing
- Lunar orbit rendezvous: LSAM AS to CEV
- LOx/LH in EDS and LSAM DS
- Lox/Methane in LSAM AS and CEV

Crew LV

Cargo LV

Departure Stage

Lunar Surface Access Module

NASA's Exploration Architecture September, 2005

Followed by Dr. Griffin's Comments at 52nd AAS Annual Meeting in Houston, 11/05

- "But if there were a fuel depot available on orbit, one capable of being replenished at any time, the Earth departure stage could after refueling carry significantly more payload to the Moon..."
- "The architecture which we have advanced places about 150 metric tons in LEO, 25 MT on the Crew Launch Vehicle and 125 MT on the heavy-lifter."
- During ascent, the Ares V Earth Departure Stage uses approximately 125 t of propellant to deliver 125 t to LEO
- "...at a conservatively low government price of \$10,000/kg in LEO, 250 MT of fuel for two missions per year is worth \$2.5 B, at government rates."

Two LEO Propellant Depots Add Capability, Options and Resiliency

- Eliminates EDS & LSAM boil-off concerns
 - Earth orbit rendezvous: EDS/LSAM to Depot; CEV to LSAM/EDS

1.5 Launch or Single Launch architecture: Ares I & V or Ares V

EDS & LSAM receive propellant in LEO

EDS performs Earth orbit insertion & circularization, TLI, and LOI burns

Exploration Departure Stage

LSAM DS performs only

- Lunar orbit rendezvous: LSAM AS to CEV
- LOx/LH in EDS and LSAM DS
- Lox/Methane in LSAM AS and CEV

Cargo LV

Crew LV

Lunar Surface Access Module

NASA's Exploration Architecture September, 2005

Lunar Missions Using Ares I and V or Ares V; with 51 t Landed with Depot vs. 18 t Without; or Two Sorties per Launch with Depot

A Propellant Depot System

A LEO Propellant Depot Operational Concept: A Hub for Exploration and HEO Missions

Examples of Propellant Depot Impacton Mission Performance

	Current	With Depot
Lunar Missions		
 Landed mass 	18 t	51 t
 Lunar surface payload: 	2 t	≥ 35 t
 Sorties (with ESAS landed mass) 	1	2
GTO mission (167 km x 35,788 km x 27°):		
Delta IV H:	13 t	35 t
• Atlas V 551:	9 t	23 t
GSO mission	•	t =
Delta IV H:	6 t	18 t
• Atlas V 551:	4 t	1 0 t
Interplanetary injection (C3 = 0)	\$	S
Delta IV H:	10 t	20 t
• Atlas V 551:	7 t	15 t

Refueling the EDS/Lander Vehicle from Depot

- LPD RMS berths EDS & LPD
- Single mating interface
- Transfer prior to Orion mate
- Lox and LH to EDS & Lander
- ~25 t transferred to Lander
- ~125 t transferred to EDS
- 2 depots for redundancy
- 12-month depot refill cycle

Commercial Propellant Depot Risks

- Cryo fluid management technology not matured
- SpaceX fails to successfully deploy Falcon 9
- Other customers fail to materialize
- Unable to sign long-term purchase agreement
- Lunar missions cancelled, delayed or reduced rate
- Maximum LEO price less than required for minimum ROI
- NASA opts to use Ares V as tanker; accepts less capability per mission and forgoes two-sortie mission

Steps to LEO Propellant Depot

- Mature cryo fluid management capability
- Successful Space Ex Falcon 9 development
- Mature business plan
- Long term propellant purchase agreements
- Continuation of lunar exploration/development plans
 - NASA
 - Bigelow Aerospace
 - Shackleton Energy Company
- Successful depot system DDT&E

Business Case Constraints

- \$10,000/kg propellant value to NASA in LEO (Griffin, 11/05)
- \$3,300 3,600/kg to 185 km x 28.5
 - Space X Falcon 9 and Falcon 9 Heavy with 5.2 m shroud
 - Unit launch price based on gross mass to LEO
 - www.spacex.com (July 3, 2007)

Questions?

